Bien sûr ! Here’s a friendly and helpful Python script to analyze data related to

Bien sûr ! Here’s a friendly and helpful Python script to analyze data related to metamaterials. This script will read data from a CSV file, perform some basic analysis, and visualize the results using popular libraries like Pandas and Matplotlib.

« `python
# Import necessary libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Load the dataset (assuming it’s a CSV file with relevant data)
data = pd.read_csv(‘metamaterials_data.csv’)

# Display the first few rows of the dataset
print(« Here’s a sneak peek at the first few rows of the dataset: »)
print(data.head())

# Basic data analysis
print(« \nLet’s do some basic analysis! »)

# Check for missing values
missing_values = data.isnull().sum()
print(« \nMissing values in the dataset: »)
print(missing_values)

# Summary statistics
summary_statistics = data.describe()
print(« \nSummary statistics of the dataset: »)
print(summary_statistics)

# Visualizations
print(« \nTime for some visualizations! »)

# Histogram of a specific column, let’s say ‘frequency’
plt.figure(figsize=(10, 6))
sns.histplot(data[‘frequency’], kde=True, bins=30)
plt.title(‘Distribution of Frequencies’)
plt.xlabel(‘Frequency (Hz)’)
plt.ylabel(‘Frequency’)
plt.show()

# Scatter plot of ‘frequency’ vs ‘permittivity’
plt.figure(figsize=(10, 6))
sns.scatterplot(x=’frequency’, y=’permittivity’, data=data)
plt.title(‘Frequency vs Permittivity’)
plt.xlabel(‘Frequency (Hz)’)
plt.ylabel(‘Permittivity’)
plt.show()

# Correlation heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(data.corr(), annot=True, cmap=’coolwarm’)
plt.title(‘Correlation Heatmap’)
plt.show()

# Group by a category, let’s say ‘material_type’, and calculate the mean ‘refractive_index’
grouped_data = data.groupby(‘material_type’)[‘refractive_index’].mean().reset_index()
print(« \nMean Refractive Index by Material Type: »)
print(grouped_data)

# Plot the grouped data
plt.figure(figsize=(10, 6))
sns.barplot(x=’material_type’, y=’refractive_index’, data=grouped_data)
plt.title(‘Mean Refractive Index by Material Type’)
plt.xlabel(‘Material Type’)
plt.ylabel(‘Mean Refractive Index’)
plt.show()

# Let’s find out the most common ‘material_type’
most_common_material = data[‘material_type’].mode()[0]
print(f »\nThe most common material type is: {most_common_material} »)

# Finally, let’s say a quick thank you for exploring metamaterials with us!
print(« \nThank you for exploring the fascinating world of metamaterials with us! »)

# End of script
« `

### Explanation:
1. Libraries Import: We import essential libraries such as Pandas for data manipulation, Matplotlib and Seaborn for visualization.
2. Loading Data: The script assumes you have a CSV file named `metamaterials_data.csv` with relevant columns like `frequency`, `permittivity`, `refractive_index`, and `material_type`.
3. Basic Analysis: Checks for missing values and provides summary statistics.
4. Visualizations:
– A histogram showing the distribution of frequencies.
– A scatter plot to visualize the relationship between frequency and permittivity.
– A correlation heatmap to understand relationships between all numerical variables.
– A bar plot showing the mean refractive index for different material types.
5. Group Analysis: Finds and prints the most common material type.

This script should provide a good starting point for analyzing data related to metamaterials in a friendly and helpful manner. Enjoy your data exploration!

Retour en haut